Synchronization of local neural networks in the somatosensory cortex: A comparison of stationary and moving stimuli.
نویسندگان
چکیده
Spontaneous and stimulus-induced responses were recorded from neighboring groups of neurons by an array of electrodes in the primary (SI) somatosensory cortex of intact, halothane-anesthetized cats. Cross-correlation analysis was used to characterize the coordination of spontaneous activity and the responses to peripheral stimulation with moving or stationary air jets. Although synchronization was detected in only 10% (88 of 880) of the pairs of single neurons that were recorded, cross-correlation analysis of multiunit responses revealed significant levels of synchronization in 64% of the 123 recorded electrode pairs. Compared with spontaneous activity, both stationary and moving air jets caused substantial increases in the rate, proportion, and temporal precision of synchronized activity in local regions of SI cortex. Among populations of neurons that were synchronized by both types of air-jet stimulation, the mean rate of synchronized activity was significantly higher during moving air-jet stimulation than during stationary air-jet stimulation. Moving air jets also produced significantly higher correlation coefficients than stationary air jets in the raw cross-correlograms (CCGs) but not in the shift-corrected CCGs. The incidence and rate of stimulus-induced synchronization varied with the distance separating the recording sites. For sites separated by /=500 microm, only 37% of the multiunit responses were synchronized by discrete stimulation with a single air jet. Measurements of the multiunit CCG peak half-widths showed that the correlated activity produced by moving air jets had slightly less temporal variability than that produced by stationary air jets. These results indicate that moving stimuli produce greater levels of synchronization than stationary stimuli among local groups of SI neurons and suggest that neuronal synchronization may supplement the changes in firing rate which code intensity and other attributes of a cutaneous stimulus.
منابع مشابه
Responses of primary somatosensory cortical neurons to controlled mechanical stimulation.
The results of psychophysical studies suggest that displacement velocity may contribute significantly to the sensation of subcortical somatosensory neurons. The cortical correlates of these phenomena, however, are not known. In the present study the responses of rapidly adapting (RA) neurons in the forelimb region of cat primary somatosensory cortex (SI) to controlled displacement of skin and h...
متن کاملApplication of artificial neural networks on drought prediction in Yazd (Central Iran)
In recent decades artificial neural networks (ANNs) have shown great ability in modeling and forecasting non-linear and non-stationary time series and in most of the cases especially in prediction of phenomena have showed very good performance. This paper presents the application of artificial neural networks to predict drought in Yazd meteorological station. In this research, different archite...
متن کاملLinear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control
In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...
متن کاملSynchronized oscillations during cooperative feature linking in a cortical model of visual perception
A neural network model of synchronized oscillator activity in visual cortex is presented in order to account for recent neurophysiological findings that such synchronization may reflect global properties of the stimulus. In these recent experiments, it was reported that synchronization of oscillatory firing responses to moving bar stimuli occurred not only for nearby neurons, but also occurred ...
متن کاملHourly Wind Speed Prediction using ARMA Model and Artificial Neural Networks
In this paper, a comparison study is presented on artificial intelligence and time series models in 1-hour-ahead wind speed forecasting. Three types of typical neural networks, namely adaptive linear element, multilayer perceptrons, and radial basis function, and ARMA time series model are investigated. The wind speed data used are the hourly mean wind speed data collected at Binalood site in I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 81 3 شماره
صفحات -
تاریخ انتشار 1999